The Mathematical Association of Victoria MATHEMATICAL METHODS and MATHEMATICAL METHODS (CAS)

Trial written examination 1
2006
Reading time: 15 minutes
Writing time: 1 hour

Student's Name:

QUESTION AND ANSWER BOOK

Structure of book

| Number of questions

 8Number of questions
 to be answered | Number of marks |
| :---: | :---: | :---: |
| 8 | 40 |

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Working space

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

Consider $f: R \backslash\{3\} \rightarrow R$, where $f(x)=\frac{2}{x-3}+4$.
a. Find the rule and domain for f^{-1}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the coordinates of the points where $f=f^{-1}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$3+2=5$ marks

Question 2

Solve the equation $2 \sin ^{2}(x)=1$ for $x \in[-\pi, \pi]$, expressing all solutions as exact values.
\qquad
\qquad
\qquad
\qquad

Question 3

Consider $f:(0,4] \rightarrow R$, where $f(x)=(x-2)^{\frac{1}{3}}$ and $g:[0,4) \rightarrow R$, where $g(x)=(x-2)^{\frac{1}{3}}$.
a. Sketch the graphs of f and g on the set of axes below.

b. Hence, sketch the graph of $f+g$ on the set of axes in part a.
c. Use calculus to find the area bounded by the graphs of f and g.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4

Consider $f: R \backslash\{0\} \rightarrow R$, where $f(x)=\log _{e}(|x|)$ and $g:\left(-\infty, \frac{-5}{2}\right) \rightarrow R$, where $g(x)=2 x+5$.
a. Find the rule and the domain for $f(g(x))$.
\qquad
\qquad
\qquad
b. Find the equation of the normal to $f(g(x))$ at $x=-4$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$2+3=5$ marks

Question 5

Water is being poured into a cylindrical vase at a rate of $8 \mathrm{~cm}^{3} / \mathrm{s}$. The height of the vase is double the radius.
a. Find V, the volume of the vase, in terms of h, the height of the vase.
\qquad
\qquad
b. At what rate is the water level rising when the depth is 2 cm ?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$1+3=4$ marks

Question 6

Consider $f:(-1, \infty) \rightarrow R$, where $f(x)=\frac{2 e^{3 x}}{\sqrt{x+1}}$.
a. Find $f^{\prime}(x)$ in the form $\frac{(a x+b) e^{c x}}{(x+1)^{d}}$, where a, b, c and d are real constants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Hence state the nature and the coordinates of the stationary point of f.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7

In a particular town, both unleaded petrol and ethanol-blended petrol are sold at the petrol station. A petrol price rise will take place on 1st June. It is predicted that during the month of June, 20\% of drivers who bought unleaded petrol the previous week will buy the cheaper ethanol-blended petrol the following week. It is also predicted that only 10% of drivers who buy ethanol-blended petrol each week in June will buy unleaded petrol the following week.

A driver is chosen at random from the group that bought unleaded petrol in the last week of May. According to the predictions, what is the probability that the chosen driver will buy ethanol-blended fuel in the second week of June? (Assume that all of the drivers in the group buy petrol every week).
\qquad
3 marks

Question 8

A continuous random variable, X, has the probability density function
$f(x)=\left\{\begin{array}{cr}k \cos \left(\frac{x}{2}\right) & \text { for } 0 \leq x \leq \pi \\ 0 & \text { elsewhere }\end{array}\right.$
where k is a positive real constant.
a. Evaluate $\int_{0}^{\pi} \cos \left(\frac{x}{2}\right) d x$.
\qquad
\qquad
\qquad
b. Hence find the value of k.
\qquad
\qquad
\qquad
c. Differentiate $x \sin \left(\frac{x}{2}\right)+2 \cos \left(\frac{x}{2}\right)$.
\qquad
\qquad
\qquad
d. Hence evaluate $\int_{0}^{\pi} x \cos \left(\frac{x}{2}\right) d x$.
\qquad
\qquad
\qquad
e. Hence find $E(X)$, the expected value of X.
\qquad
\qquad
\qquad
$2+1+2+1+1=7$ marks

MATHEMATICAL METHODS AND MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

Mathematical Methods and Mathematical Methods CAS Formulas

Mensuration

area of a trapezium:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
volume of a pyramid: $\quad \frac{1}{3} \mathrm{Ah}$
volume of a sphere: $\quad \frac{4}{3} \pi r^{3}$
area of a triangle: $\quad \frac{1}{2} b c \sin A$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$
product rule: $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule: $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
approximation: $\quad f(x+h) \approx f(x)+h f^{\prime}(x)$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$
$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$
mean: $\quad \mu=\mathrm{E}(X) \quad$ variance: $\quad \operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

probability distribution		mean	variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

